RIGN N

Optical fibre sensors for *in vivo* dosimetry

Sinéad O'Keeffe

Optical Fibre Sensors Research Centre & Limerick Digital Cancer Research Centre Health Research Institute, University of Limerick, Limerick, Ireland.

@sinead_o_keeffe

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324

An Institiúid Taighde Sláinte Health Research Institute

H2020-ICT-05-2019: APPLICATION DRIVEN PHOTONIC COMPONENTS RIA (II): PHOTONICS SYSTEMS FOR ADVANCED IMAGING TO SUPPORT DIAGNOSTICS DRIVEN THERAPY FUNDED: €4.82M - 48 MONTHS

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324

ORIGIN

optical fibre dose imaging for adaptive brachytherapy

Advantages of Optical Fibre Sensors

- Small size, lightweight & flexible
 - minimally invasive in vivo monitoring
- Provide remote real-time monitoring
- Easy to handle
- Can be multiplexed for multi-point sensing
- Electrically passive
- Waterproof
- Unperturbed by magnetic fields (MRI)
- PMMA near tissue equivalence & robust

OPTICAL FIBRE SENSORS FOR MASS MANUFACTURABILITY

CLINICAL CONSTRAINTS

- Target area: Brachytherapy needles/catheters 18 Gauge (1mm inner diameter)
- Urethra/Bladder: Foley catheter 14 French (2mm inner diameter)
- Rectum: Sheath surrounding trans-rectal ultrasound probe

Optical fibre sensor
 500um Ø fibre
 1mm Ø with jacket

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324

PRACTICALITIES OF PLACEMENT

Prostate

- Within brachytherapy needles/catheters
- 1 3 depending on prostate volume
- Sensor stability during treatment crucial to ensure accurate source localisation.

00

rethra

- 3 fibre sensors and 2 EMT sensors are fixed in pre-prepared bundles.
- Placed within a sterile universal brachytherapy catheter before inserting it in Foley catheter.

Rectum

• A sleeve containing up to 9 optical fibres and an electromagnetic tracking sensor will be placed over the rectal US for insertion into the rectum to the superior border of the prostate.

SENSOR POSITIONING

- Given the variability in dose demonstrated throughout prostate sectors, fibres will be placed at the midpoint of the base, midgland & apex.
- 30 patients, 2-step LDR brachytherapy, NICC.
- Positions within urethra:
 - Coordinates of dosimeter locations converted to length along the catheter by calculating arc length distance between the bladder neck and each dosimeter location (to compensate for non-straight path of the urethra within the prostate).
 - Median distance from bladder neck to midpoint of urethra within base, midgland & apex of prostate:
 - 0.6 cm (base); 1.8 cm (midgland); 3.2 cm (apex).
- Positions within rectum:
 - Median distance from superior prostate to midpoint of rectum within base, midgland & apex of prostate:
 - 0.7 cm (base); 2.1 cm (midgland); 3.5 cm (apex).

RI

PHOTON DETECTION SYSTEM

- The choice of detector, front-end electronics, & digitization depends on the source activity and scintillation characteristics, notably the LIGHT YIELD and DECAY TIME.
 - When the decay time is long (500 µs for the ORIGIN material), scintillating light is "diluted" in time, so every interaction results in a trail of single photons

+ Pro: "multiplication factor": 1 gamma ray \rightarrow N photons out

- con: you need a single photon sensitive detector

The baseline sensors for ORIGIN are Silicon-Photomultipliers - single photon sensitivity

MULTI-CHANNEL SYSTEM

► SiPMs

- ► HDR: KETEK non-cooled SiPMs
- LDR: Hamamatsu TE-cooled SiPMs for improved sensitivity
- CAEN A5202 FERS
 - Front-end board
 - Embedding 2 Citiroc1A (64 channels)

HDR PROSTATE TREATMENT

Prostate phantom printed

- 15 channels for needles/ fibres
- Rectal cavity insert mimicking a probe
- Urethral cavity to hold a 12 gauge catheter
- CT imaging
 - Organs contoured
- Needle positions verified using EM tracking

HDR MEASUREMENTS

ORIGIN

HDR MEASUREMENTS

CUMULATIVE DOSE – RESULTS

PROSTATE PLAN ANALYSIS - POINT DOSES 20.000 18.000 16.000 14.000 12.000 Dose (Gy) 10.000 8.000 6.000 4.000 2.000 0.000 2 3 4 5 6 7 8 9 10 11 TPS Dose 11.780 4.451 3.903 16.355 3.449 6.978 5.234 4.084 2.348 2.669 6.704 Measured Dose 13.292 4.497 3.537 7.093 17.414 5.175 3.985 3.312 2.286 2.582 7.695

Sensor

■ TPS Dose ■ Measured Dose

- Measured dose summed across all dwell positions
- Point doses compared to dose points added in TPS
- Composite uncertainty of 6.2% used

LDR PROSTATE TREATMENTS

TE-cooled SiPM system

- Designed to reduce dark count rate (DCR) through thermoelectric cooling of SiPMs
- Improved sensitivity through cooling was required for application in Low Dose Rate Brachytherapy (dose rate < 2 Gy.h⁻¹)
- Allows measurement up to 3 cm from I-125 seed, meeting specifications of ORIGIN system for LDR-BT

LDR RESULTS

Photon Count Rate

- Measured PCR @ 1 cm: 7.63 kHz
- Seed activity at time of measurement:
 0.26 mCi
- Seed activity at BT implantation: 0.41 mCi (monotherapy)
- Thus, PCR @ 1cm during implantation: 11.97 kHz
- Using characterised fall-off behavior, PCR @ 3 cm: 0.87 kHz

SOURCE LOCALISATION

Step 1:

 Given sensor readings, calculate most likely distance to source using a Bayesian approach

Step 2:

 Given most likely distances and EMT location of sensors, use trilateration to locate most likely position of the source

Step 3:

 With most likely position of source, map dosage onto ultrasound images

Dose distribution

Trilateration

Single sensor algorithm

Dose Mapping

SOURCE-LOCALISATION – HDR RESULTS

Euclidean Distance (x,y,z) - Predicted and Actual Dwell Positions

PHOTONICS PUBLIC PRIVATE PARTNERSHIP

ENGINEERING SPECIFICATIONS

	Prototype	
	LDR	HDR
No of fibre sensors	16	16
Sensitivity	107 counts/mGy	30000 counts/mGy
Sensitivity (clinically relevant)	1 kHz @ 3cm	27±3 kHz @ 10cm
Dose/dose rate measurement resolution (statistical precision)	5% (lab) 15% (clinically) in 0.5s @ 1 cm	2.95±0.08% in 0.1s @ 10cm
Linearity & dynamic range vs dose/dose rate	1 mGy to 10 Gy	1 mGy to 10 Gy
Repeatability	Not exceeding 1%	Not exceeding 1%
Energy Response	1251	192Ir/60Co
Spatial Resolution (point dose)	6mm (clinical) 1.8mm (lab) @ 1cm	0.4±0.03 mm @ 5mm
Spatial Resolution (source localisation)	?	3mm
Time Resolution	0.5s	0.1s
Temperature Range	0.1%/°C	0.1%/°C

0 R I G I N

SUMMARY

Optical fibre sensors are uniquely positioned to provide *in vivo* brachytherapy dosimetry

EC Funded ORIGIN system provides multipoint sensing for source localisation and dose mapping for HDR and LDR Brachytherapy.

Demonstrated required sensitivity at clinically relevant distances for both HDR and LDR, with good precision and spatial resolution.

Machine learning methods improve the accuracy of our source localisation algorithms for more precise monitoring

ACKNOWLEDGEMENTS

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324

FOR MORE INFORMATION:

- ⊠ sinead.okeeffe@ul.ie
- **@ORIGIN_2020**
- RIGIN2020.eu
- youtube.com/@origin8174

The ORIGIN project is an initiative of the Photonics Public Private Partnership (www.photonics21.org), and has received funding from the European Union's Horizon 2020 Research and Innovation Programme under Grant Agreement n° 871324

IN

 \bigcirc

RIG