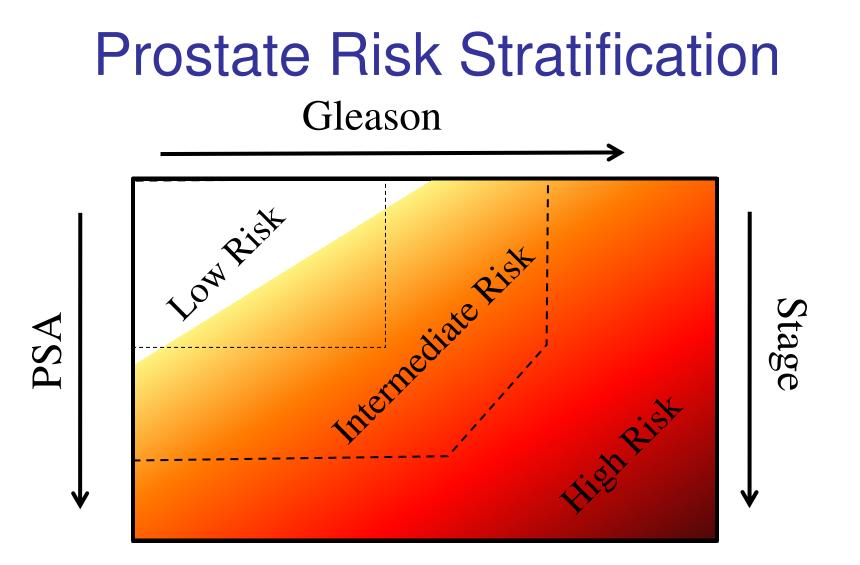
How can we best use HDR brachytherapy to escalate dose in intermediate and high risk disease?

Gerard Morton Associate Professor



Objectives

- Why should we escalate dose?
- What HDR dose and fractionation should we use?
- What's the best HDR technique?
- Ongoing questions:
 - EBRT + BT vs. BT alone?
 - Role of ADT?
 - Elective nodal irradiation?

Radiation dose is important..

 Randomized EBRT dose escalation studies

Randomized EBRT Studies

Author	n	Dose Arms	
MD Anderson	301	70 Gy vs 78 Gy	
GETUG	306	70 Gy vs 80 Gy	
Dutch Multicenter	669	68 Gy vs 78 Gy	
Royal Marsden	126	64 Gy vs 74 Gy**	
MGH/Loma Linda	393	70.2 Gy vs 79.2 Gy*	
MRC RT01	843	64 Gy vs 74 Gy**	

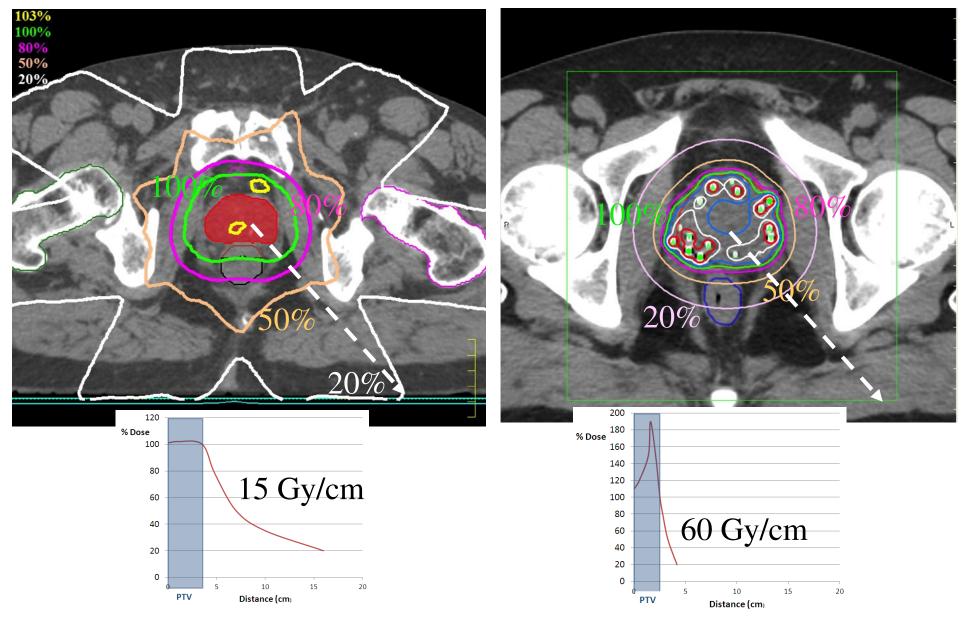
*proton boost

**neoadjuvant ADT x 3-6 mos

Randomized EBRT Studies

Author	Eligibility	Median Follow-up
MD Anderson	T1-T3	8.7 yrs
GETUG	T1-T3, PSA <50	61 months
Dutch Multicenter	T1-T4, PSA <60	70 months
Royal Marsden	T1-T3b	74 months
MGH/ Loma Linda	T1-T2b, PSA < 15	66 months
MRC RT01	T1-T3, PSA < 50	64 months

Randomized EBRT Studies


	bDFS		
Author	Standard	High Dose	Time
MD Anderson	59%	78%	8 years
GETUG	68%	77%	5 years
Dutch Multicenter	45%	56%	7 years
Royal Marsden	59%	71%	5 years
MGH/ Loma Linda	79%	91%	5 years
MRC RT01	60%	71%	5 years

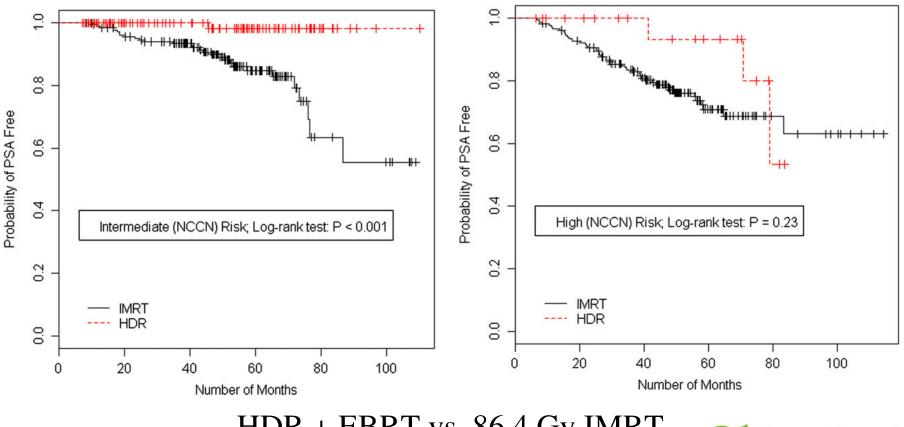
A 10% increase in EBRT dose is associated

with a 10% increase in bDFS

EBRT vs. Brachytherapy

Role of Brachytherapy

- Prostate brachytherapy allows dose escalation beyond that achievable by any form of external beam
- Brachytherapy allows greater conformality
- Brachytherapy allows greater sparing of surrounding tissues
- Higher efficacy, less toxicity, less risk of second malignancy



HDR + EBRT DFS

Study	FU (mo)	Overall	Intermediate	High Risk
Galalae (2004)	60	77%	88%	69%
Astrom (2005)	48	82%	88%	61%
Flynn (2007)	44	90%	92%	72%
Phan (2007)	59	86%	90%	78%
Ghilezan (2007)	70	82% (10 yr)	88%	74%
Hasan (2007)	68	81% (10 yr)	92%	71%
Bachand (2009)	44	96%	96%	96%
Deutsch (2010)	47	96%	98%	93%
Cury (2011)	65	91%	91%	
Morton (2011)	72	98%	98%	

Comparison of PSA relapse-free survival in patients treated with ultra-high-dose IMRT versus combination HDR brachytherapy and IMRT

Israel Deutsch¹, Michael J. Zelefsky¹, Zhigang Zhang², Qianxing Mo², Marco Zaider³, Gil'ad Cohen³, Oren Cahlon¹, Yoshiya Yamada^{1,*}

HDR + EBRT vs. 86.4 Gy IMRT

HDR + EBRT vs. EBRT alone

VS.

Hoskin Randomised Trial

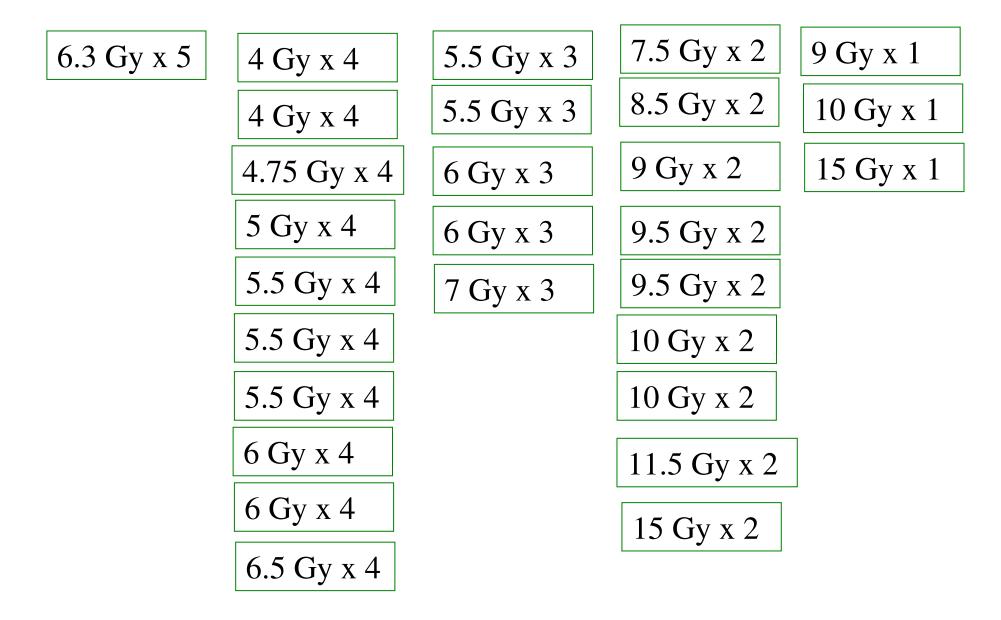
EBRT (35.75 Gy/13f) + HDR (8.5 Gy x 2)

1.0p = 0.030.8-PSA PROGRESSION 0.6-External beam 0.4 0.2 External beam + BT 0.0 5 6 2 3 4 YEAR

EBRT (55 Gy/20f)

31% reduction in risk of recurrenceNo difference in late toxicity

Hoskin et al. Radiother Oncol 84(2007):114-120 Hoskin et al. Radiother Oncol 2012


Conclusion

- HDR + EBRT provides higher diseasefree survival than EBRT alone
- But what dose to use?

What Dose and Fractionation?

BRACHYTHERAPY

Brachytherapy 11 (2012) 20e 32

American Brachytherapy Society consensus guidelines for high-dose-rate prostate brachytherapy Yoshiya Yamada^{1,*}, Leland Rogers², D. Jeffrey Demanes³, Gerard Morton⁴, Bradley R. Prestidge⁵, Jean Pouliot⁶, Gil'ad N. Cohen⁷, Marco Zaider⁷, Mihai Ghilezan⁸, I-Chow Hsu⁶

"Given the heterogeneity of prescription doses described in the literature, all reporting similar excellent outcomes in terms of toxicity and disease control, no particular dose fractionation schedule can

be recommended."

What dose and fractionation?

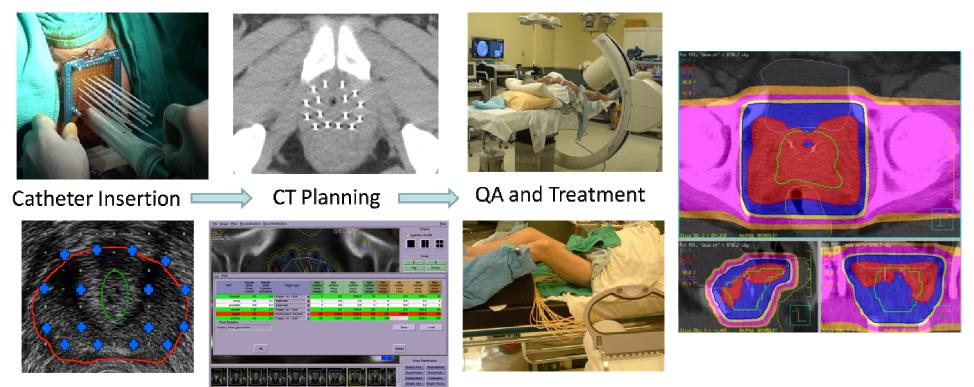
- Effective
- Low toxicity
- Resource utilisation/ cost
- Convenience

What dose and fractionation?

Hypothesis

15 Gy HDR + 37.5 Gy EBRT in 15 fractions would be equivalent to
10 Gy x 2 HDR + 45 Gy EBRT in 25 fractions for disease control and late effects

> Int J Radiat Oncol Biol Phys 77:811-7, 2010 Int J Radiat Oncol Biol Phys 80:1299-1305, 2011 Radiother Oncol 100:463-467, 2011

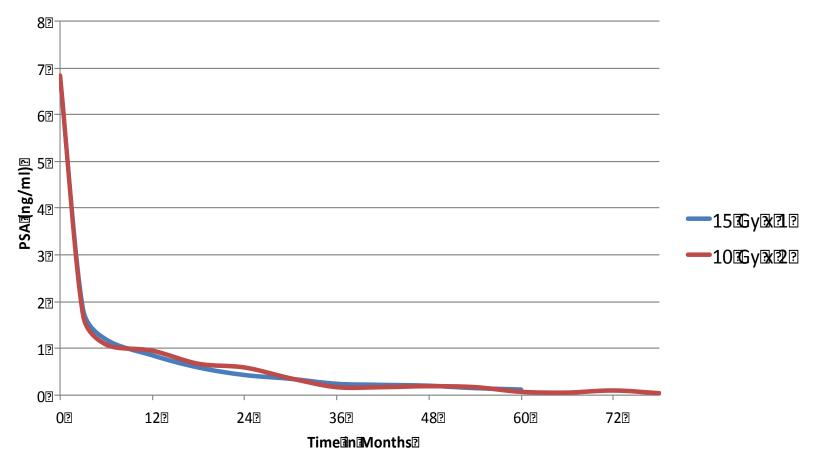


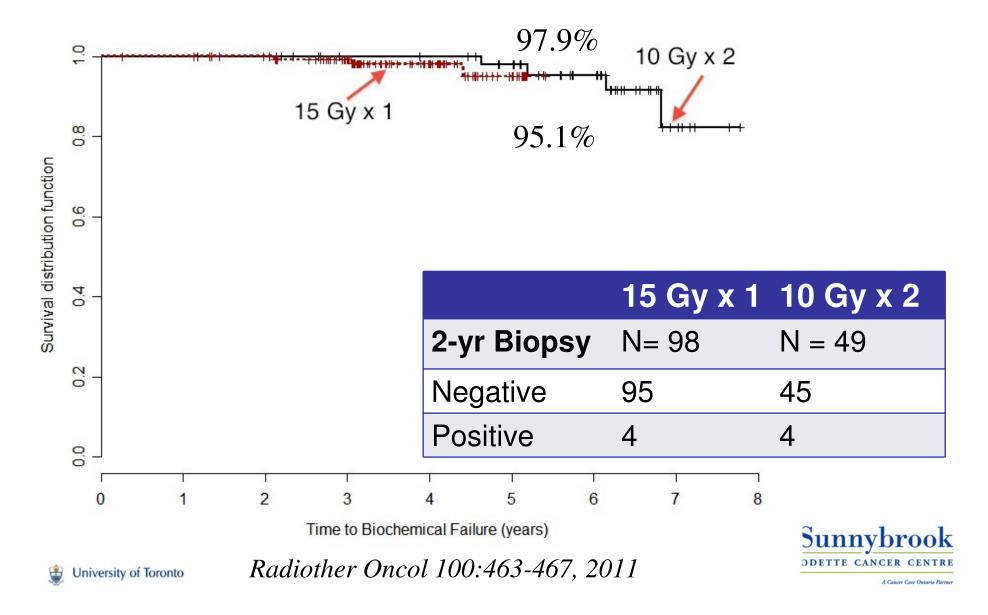
- Two Sequential Phase II Clinical Trials
- Stage T1c-T2c
 - Gleason 7, PSA < 20 ng/ml
 - Gleason 6, PSA 10-20 ng/ml
- No androgen deprivation therapy
- Prostate Volume < 60 cc
- No prior TURP

10 Gy x 2; Outpatient, 1 week apart+45 Gy/25 fractions15 Gy x 1; Outpatient+37.5 Gy/15 fractions

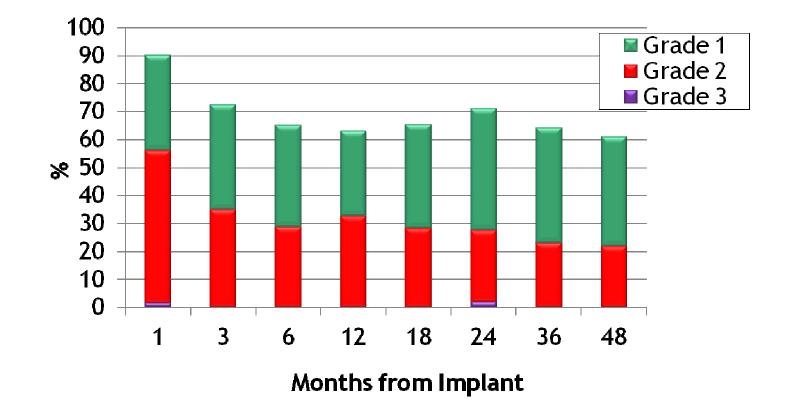
Dose Optimisation

Parameter	15 Gy x 1	10 Gy x 2
Ν	125	60
Age	65.8 (45-79 yrs)	67.8 (51-83 yrs)
PSA	6.76 (2.0-18.6)	6.83 (1.2-17.9)
Gleason 7: Gleason 6	93%:7%	80%:20%
Stage T1c:T2	62%:38%	53%:47%
Follow-up	4 yrs (20-65 mos)	6 yrs (24-84 mos)

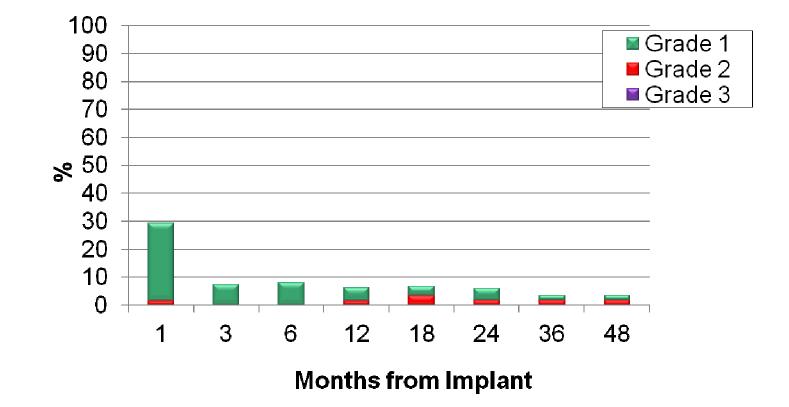

- Efficacy: PSA, DRE, Biopsy at 2 years
- Toxicity: CTCAE v3.0
- PRO: EPIC, IIEF, IPSS

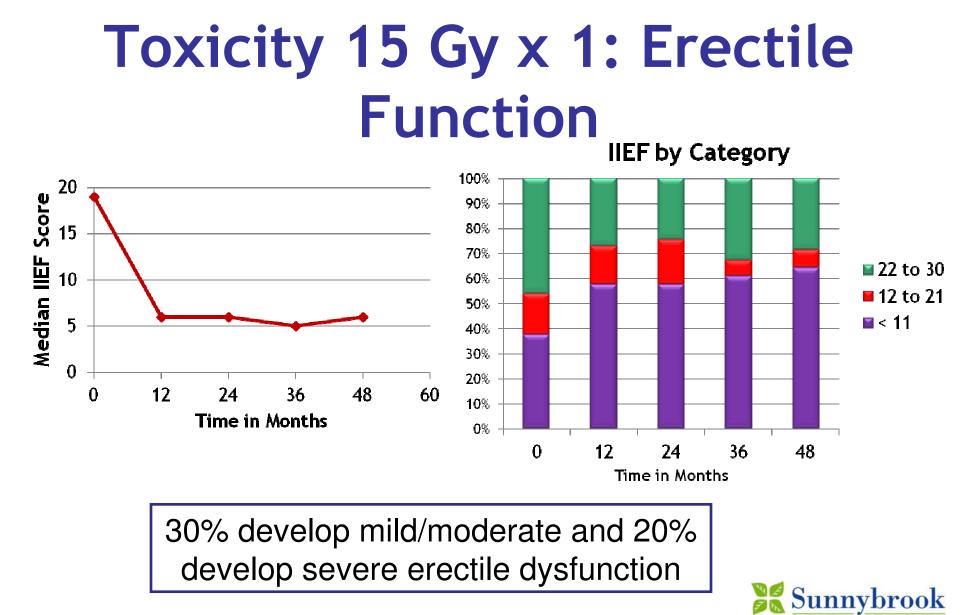

PSA Response

Median PSA?



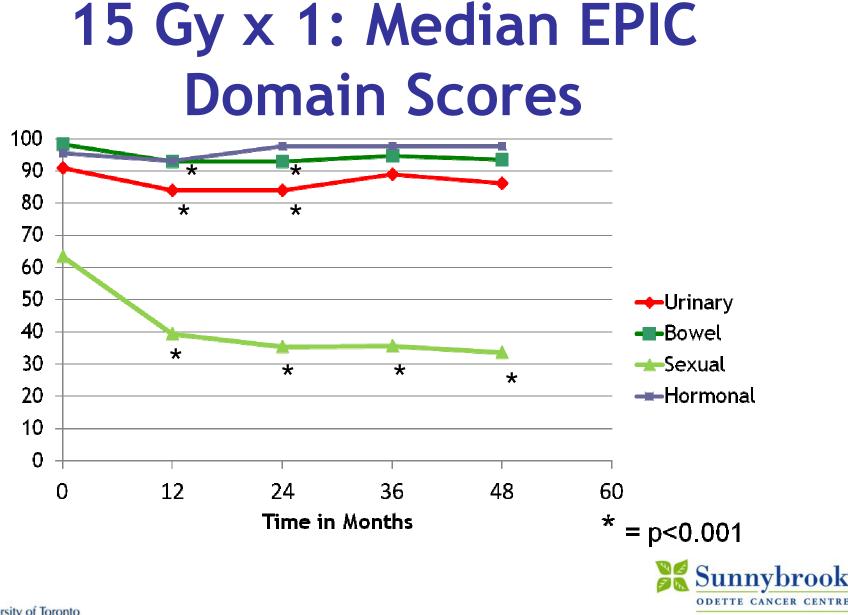
Biochemical DFS


Toxicity 15 Gy x 1: GU



University of Toronto

Toxicity 15 Gy x 1: GI



A Cancer Care Ontario Partner

ODETTE CANCER CENTRE

University of Toronto

15 Gy x 1 vs. 10 Gy x 2

Parameter	Difference
Acute GU Toxicity	Less with single fraction, p 0.0126
Late Toxicity	No difference
Health Related QOL	No difference
2-yr biopsy results	No difference
Recurrence	No difference

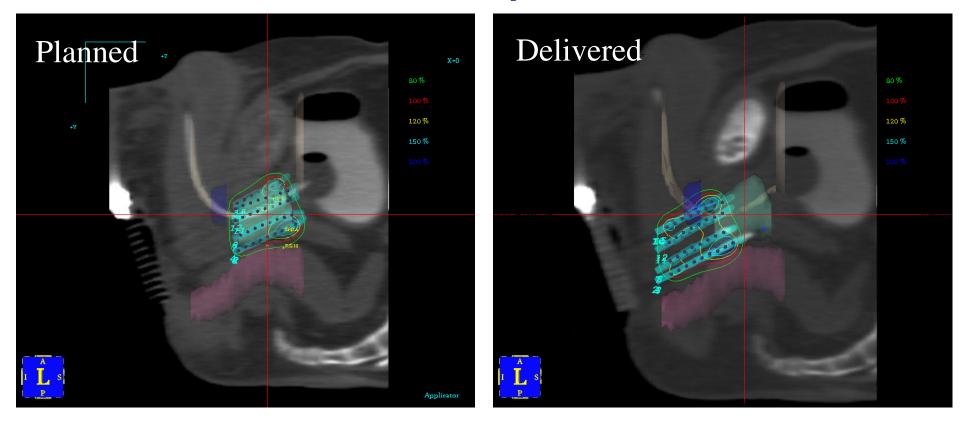
Lessons from Dosimetry

- Acute urinary toxicity associated with prostate V200 (p .0141) and baseline IPSS (p.0125)
- Late urinary function and bother associated with dose to urethra (p.0168), threshold D10 =120%
- Erectile Dysfunction associated with larger volume of CTV

Int J Radiat Oncol Biol Phys 80:1299-1305, 2011

Conclusion

- Single 15 Gy HDR has become standard fractionation in most Canadian centres
- Potential to further reduce toxicity with improved technique


What Technique?

- Limitations of CT based Technique
- Advantages of real-time intra-operative planning

🔮 University of Toronto

CT-Based Technique and Catheter Displacement

University of Toronto

CT-Based Technique and Catheter Displacement

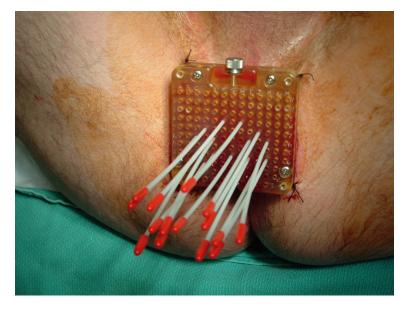


Fig. 1. Flexible afterloading catheters are fixed to a 7×7 cm template by means of a locking screw. The template is sutured securely to the perineum at all four corners.

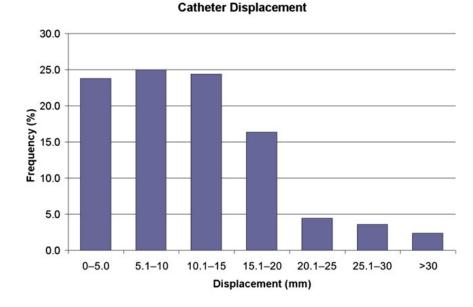


Fig. 3. Displacement of individual catheters (n = 336) between time of CT planning and treatment delivery as measured by coregistered kilovoltage cone-beam CT images in the treatment room.

Brachytherapy 10(4):299-305, 2011

CT-Based Technique and Catheter Displacement

Table 1

Mean dosimetric parameters as planned based on initial CT scan and as determined from image coregistration with initial (unadjusted) and final kilovoltage cone-beam CT before treatment delivery

	Mean, % (range, %)			
Parameter	Planned	Unadjusted	Final	
Prostate V_{100}	97.6 (95.3–99.4)	-77.3 (47.2 - 96.8); p < 0.0001	- $ >$ 90.2 (81.1-96.8); $p = 0.0002$	
Prostate D_{90}	110.5 (103.7–116.4)	72.9 (33.1–110.2); <i>p</i> < 0.0001	97.4 (79.0 -110.2); $p = 0.0023$	
Urethra V ₁₂₀	8.3 (0.9-17.0)	21.2 (1.4 -58.2); $p = 0.0046$	22.2 (7.3-65.8); p = 0.0471	
Urethra D_{10}	118 (101–125)	-125 (107-146); p = 0.0094 - 100000000000000000000000000000000000	> 126 (119 - 140); = 0.0324	

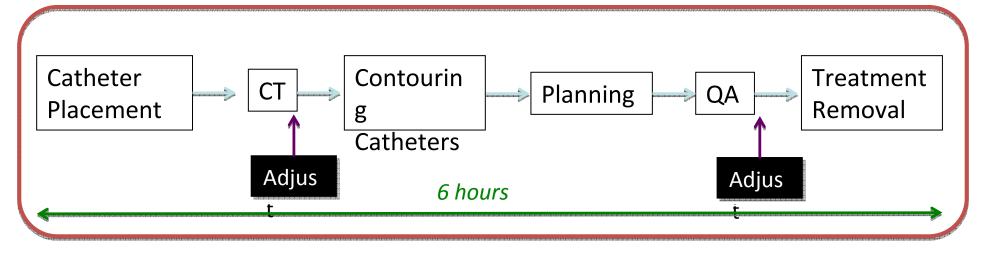
 V_{100} = percent of volume receiving 100% of prescription dose; D_{90} = percent of prescribed dose to 90% of volume; V_{120} = percent of volume receiving 120% of prescription dose; D_{10} = percent of prescribed dose to 10% of volume.

p Value indicates difference from planned parameter.

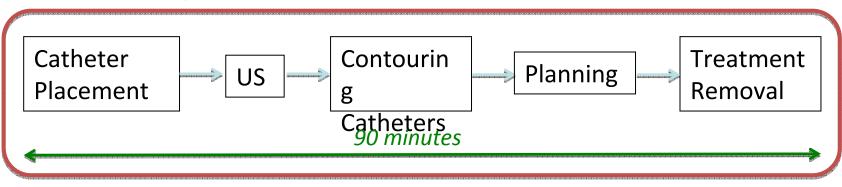
Brachytherapy 10(4):299-305, 2011

Intra-Operative 3D US Based Planning

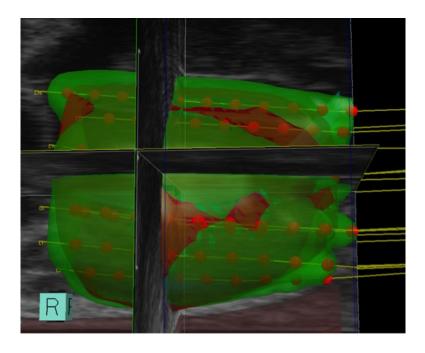
Catheter Insertion and Treatment Delivery Without Moving Patient

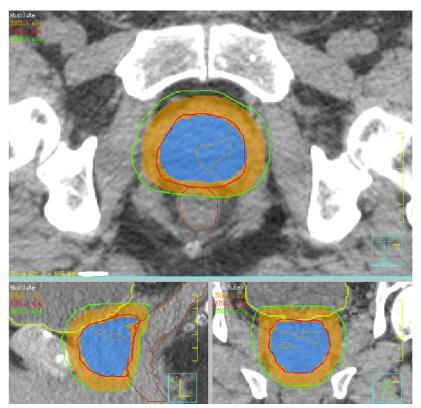

Intra-Operative 3D US Based Planning

- More consistent dosimetry than IPSA
 > V200, Urethral Dose Batchelar et al, Brachytherapy 10:3s27, 2011
- Minimal Catheter Displacement: we deliver what we plan
 Median shift 0.7 mm with US vs. 10.5 mm with CT Batchelar et al, Brachytherapy 10:3s92, 2011
- Volume of CTV 30% smaller than on CT



CT vs. US



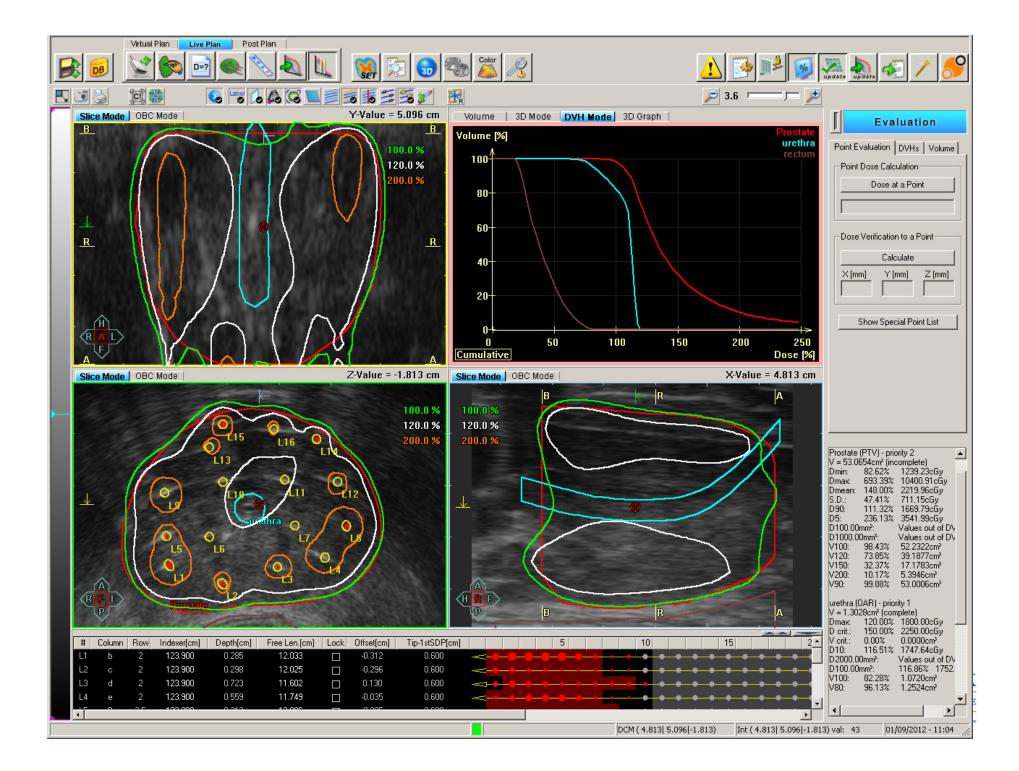

US Technique

CT Technique

Current Protocol

15 Gy x 1 HDR Real Time 3D TRUS Planning

37.5 Gy/15 fractions IMRT or VMAT Sunnybrook


Interactive Process

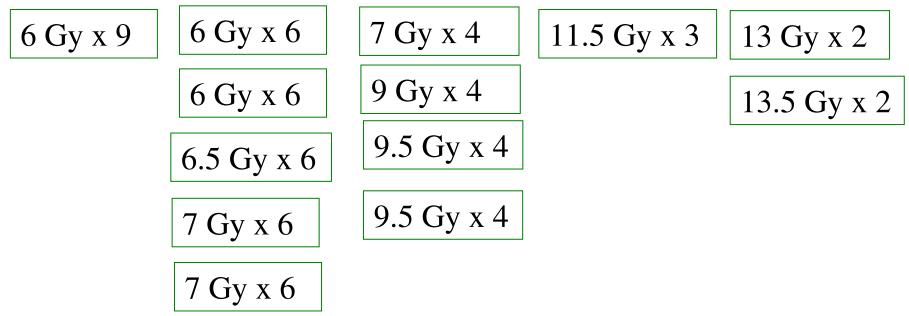
Radiation Oncologist Radiation Therapist Medical Physicist Nurse, Anaesthetist

University of Toronto

3DUS based planning

- Introduced June 2009
- 462 patients treated since then
 - Acute urinary retention 2%
 - 1 urethral stricture
- Less decline in urinary function and bother at 1 year
- Less decline in bowel function and bother at 1 year

For discussion...


- Ongoing questions:
 - EBRT + BT vs. BT alone?
 - Role of ADT?
 - Elective nodal irradiation?

EBRT + BT vs. BT alone

HDR Monotherapy

 85-99% bDFS for low/intermediate risk, 79-91% bDFS for high risk
 Sunnybrook

ODETTE CANCER CENTRE

EBRT + BT vs. BT alone

RTOG 0232

A PHASE III STUDY COMPARING COMBINED EXTERNAL BEAM RADIATION AND TRANSPERINEAL INTERSTITIAL PERMANENT BRACHYTHERAPY WITH BRACHYTHERAPY ALONE FOR SELECTED PATIENTS WITH INTERMEDIATE RISK PROSTATIC CARCINOMA

<u>Study Chairs</u> (9/6/11)

Radiation Oncology

Pathology Mahul Amin, M.D. (310) 423-6631 FAX# (310) 423-0170 <u>aminm@cshs.org</u>

Outcomes Deborah Watkins Bruner, R.N., Ph.D. (404) 712-9695 FAX# 404-727-8514 <u>deborah.w.bruner@emory.edu</u>

Urology

Bradley R. Prestidge, M.D. Memorial Hermann Southwest Department of Radiation Oncology 7600 Beechnut Street Houston, TX 77074 (713) 456-5622 FAX# (713) 456-4076 *brad@prestidgemd.com* Martin Sanda, M.D. (617) 667-2960 FAX# (617) 667-3013 *msanda@bidmc.harvard.edu*

Role of ADT

RTOG 0815

A PHASE III PROSPECTIVE RANDOMIZED TRIAL OF DOSE-ESCALATED RADIOTHERAPY WITH OR WITHOUT SHORT-TERM ANDROGEN DEPRIVATION THERAPY FOR PATIENTS WITH INTERMEDIATE-RISK PROSTATE CANCER

Study Chairs

Principal Investigator/Radiation Oncology	External Beam Radiotherapy Co-Chair	
Alvaro A. Martinez, MD, FACR	Daniel J. Krauss, MD	
William Beaumont Hospital	William Beaumont Hospital	
Department of Radiation Oncology	Department of Radiation Oncology	
3601 W. Thirteen Mile Road	3601 W. Thirteen Mile Road	
Royal Oak, MI 48009	Royal Oak, MI 48009	
Phone: 248-551-7058/Fax: 248-551-0089	Phone: 248-551-3576/Fax: 248-551-0089	
E-mail: amartinez@beaumont.edu	E-mail: <u>dkrauss@beaumont.edu</u>	
High Dose Rate Brachytherapy Co-Chair	Low Dose Rate Brachytherapy Co-Chair	
I-Chow Hsu, MD	Gerard Morton, MD	
UCSF, Department of Radiation Oncology	Toronto-Sunnybrook Regional Cancer Center	
1600 Divisadero St. Suite H1031	Department of Radiation Oncology	
San Francisco, CA 94143-1708	2075 Bayview Ave.	
Phone: 415-353-7175/Fax: 415-353-9883	Toronto, ON M4N 3M5 CANADA	
E-mail: <u>ihsu@radonc.ucsf.edu</u>	Phone: 416-480-6165/Fax: 416-217-1338	
	E-Mail: gerard.morton@sunnybrook.ca	

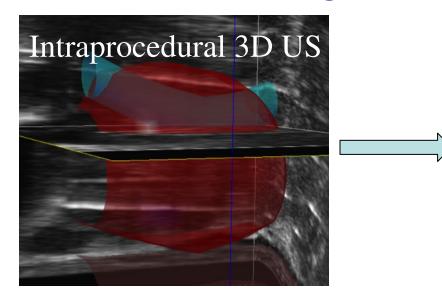
Elective Nodal Irradiation

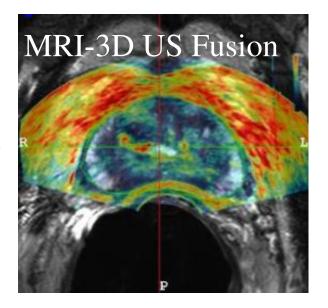
RTOG 0924

ANDROGEN DEPRIVATION THERAPY AND HIGH DOSE RADIOTHERAPY WITH OR WITHOUT WHOLE-PELVIC RADIOTHERAPY IN UNFAVORABLE INTERMEDIATE OR FAVORABLE HIGH RISK PROSTATE CANCER: A PHASE III RANDOMIZED TRIAL

Study Chairs

Principal Investigator/Radiation Oncology	High Dose Rate Brachytherapy Co-Chair	
Mack Roach III, MD	I-Chow Hsu, MD	
UCSF, Department of Radiation Oncology	UCSF, Department of Radiation Oncology	
1600 Divisadero Street	1600 Divisadero Street Suite H1031	
San Francisco, CA 94143-1708	San Francisco, CA 94143-1708	
Phone: 415-353-7181/Fax: 415-353-7182	Phone: 415-353-7175/Fax: 415-353-9883	
E-mail: mroach@radonc.ucsf.edu	E-mail: <u>ihsu@radonc.ucsf.edu</u>	
Intensity Modulated Radiotherapy Co-Chair	Low Dose Rate Brachytherapy Co-Chair	
Hans Chung, MD	Gerard Morton, MD	
Toronto-Sunnybrook Regional Cancer Center	Toronto-Sunnybrook Regional Cancer Center	
Department of Radiation Oncology	Department of Radiation Oncology	
2075 Bayview Avenue	2075 Bayview Ave.	
Toronto, ON M4N 3M5 CANADA	Toronto, ON M4N 3M5 CANADA	
Phone: 416-480-4834/Fax: 416-480-6002	Phone: 416-480-6165/Fax: 416-217-1338	
E-mail: hans.chung@sunnybrook.ca	E-Mail: gerard.morton@sunnybrook.ca	




Brachytherapy in Canada

Risk Group	Definition	Treatment	Expected 5 yr DFS
Low	T1c, G6, PSA <10	BT alone	90-95%
Intermediate	T1/T2, G6, PSA 10-20	BT alone	80-95%
	T1/T2, G7, PSA < 10	BT alone	80-95%
	T1/T2, G7, PSA 10-20 or bulk disease	BT + EBRT	80-95%
High	T3 or G8-10 or PSA > 20	BT + EBRT + ADT	65-90%

Further Refinements

MRI-3DUS Image Fusion Platform

Summing it all up....

- HDR is an effective and well tolerated method of local boosting combined with EBRT
- HDR monotherapy very promising
- Rapidly evolving data on dose and technique

🔮 University of Toronto

Acknowledgements

Radiation Oncology Andrew Loblaw Hans Chung Ewa Szumacher Patrick Cheung Cyril Danjoux Danny Vesprini Will Chu Medical Physics Raxa Sankreacha Deidre Batchelar Ananth Ravi Renee Korol Collins Yeboah Radiation Therapy Niki Law Thomas Cisecki

Cinical Trials Andrea Deabreu Liying Zhang Alex Mamedov

Acknowledgements

Abbott - Canadian Association of Radiation Oncologists Uro-Oncology (ACURA) Award Motorcycle Ride for Dad

🔮 University of Toronto